Kamis, 11 April 2013

KONSEP-KONSEP DAN HUKUM-HUKUM DALAM ILMU GEOLOGI


Untuk dapat memahami ilmu geologi, pemahaman tentang konsep-konsep dan hukum-hukum dalam ilmu geologi sangatlah penting dan merupakan dasar dalam mempelajari ilmu geologi. Adapun hukum dan konsep geologi yang menjadi acuan dalam geologi antara lain adalah konsep tentang susunan, aturan dan hubungan antar batuan dalam ruang dan waktu. Pengertian ruang dalam geologi adalah tempat dimana batuan itu terbentuk sedangkan pengertian waktu adalah waktu pembentukan batuan dalam skala waktu geologi. Konsep uniformitarianisme (James Hutton), hukum superposisi (Steno), konsep keselarasan dan ketidakselarasan, konsep transgresi-regresi, hukum potong memotong (cross cutting relationship) dan lainnya.

1.      Doktrin Uniformitarianisme

James Hutton (1785) : Sejarah ilmu geologi sudah dimulai sejak abad ke 17 dan 18 dengan doktrin katastrofisme yang sangat populer. Para penganutnya percaya bahwa bentuk permukaan bumi dan segala kehidupan diatasnya terbentuk dan musnah dalam sesaat akibat suatu bencana (catastroph) yang besar. James Hutton, bapak geologi modern, seorang ahli fisika Skotlandia, pada tahun 1795 menerbitkan bukunya yang berjudul “Theory of the Earth”, dimana ia mencetuskan doktrinnya yang terkenal tentang Uniformitarianism.

Uniformitarianisme merupakan konsep dasar geologi modern. Doktrin ini menyatakan bahwa hukum-hukum fisika, kimia dan biologi yang berlangsung saat ini berlangsung juga pada masa lampau. Artinya, gaya-gaya dan proses-proses yang membentuk permukaan bumi seperti yang kita amati saat ini telah berlangsung sejak terbentuknya bumi. Doktrin ini lebih terkenal sebagai “The present is the key to the pastdan sejak itulah orang menyadari bahwa bumi selalu berubah. Dengan demikian jelaslah bahwa geologi sangat erat hubungannya dengan waktu. Pada tahun 1785, Hutton mengemukakan perbedaan yang jelas antara hal yang alami dan asal usul batuan beku dan sedimen. James Hutton berhasil menyusun urutan intrusi yang menjelaskan asal usul gunungapi. Dia memperkenalkan hukum superposisi yang menyatakan bahwa pada tingkatan yang tidak rusak, lapisan paling dasar adalah yang paling tua. Ahli paleontologi telah mulai menghubungkan fosil-fosil khusus pada tingkat individu dan telah menemukan bentuk pasti yang dinamakan indek fosil. Indek fosil telah digunakan secara khusus dalam mengidentifikasi horison dan hubungan suatu tempat dengan tempat lainnya.

William Smith (1769-1839): Mengemukakan suatu konsep yang diterapkan pada perulangan lapisan-lapisan batuan sedimen yang ada di Inggris. Smith telah membuktikan bahwa dalam perioda waktu yang sama akan terjadi perulangan lapisan batuan yang sama dan setiap formasi pada lapisan batuan akan mempertlihatkan karakter yang sama. Berdasarkan hal tersebut, Smith mengajukan suatu konsep yang dikenal dengan hukum suksesi fauna.

2.      Hukum Superposisi (Nicholas Steno)

1. Horizontalitas (Horizontality) : Kedudukan awal pengendapan suatu lapisan batuan adalah horisontal, kecuali pada tepi cekungan memiliki sudut kemiringan asli (initial-dip) karena dasar cekungannya yang memang menyudut.

2. Superposisi (Superposition) : Dalam kondisi normal (belum terganggu), perlapisan suatu batuan yang berada pada posisi paling bawah merupakan batuan yang pertama terbentuk dan tertua dibandingkan dengan lapisan batuan diatasnya.

3. Kesinambungan Lateral (Lateral Continuity) : Pelamparan suatu lapisan batuan akan menerus sepanjang jurus perlapisan batuannya. Dengan kata lain bahwa apabila pelamparan suatu lapisan batuan sepanjang jurus perlapisannya berbeda litologinya maka dikatakan bahwa perlapisan batuan tersebut berubah facies. Dengan demikian, konsep perubahan facies terjadi apabila dalam satu lapis batuan terdapat sifat, fisika, kimia, dan biologi yang berbeda satu dengan lainnya.

3. Keselarasan dan Ketidakselarasan (Conformity dan Unconformity)

a)                  Keselarasan (Conformity): adalah hubungan antara satu lapis batuan dengan lapis batuan lainnya diatas atau dibawahnya yang kontinyu (menerus), tidak terdapat selang waktu (rumpang waktu) pengendapan. Secara umum di lapangan ditunjukkan dengan kedudukan lapisan (strike/dip) yang sama atau hampir sama, dan ditunjang di laboratorium oleh umur yang kontinyu.


b)                  Ketidak Selarasan (Unconformity): adalah hubungan antara satu lapis batuan dengan lapis batuan lainnya (batas atas atau bawah) yang tidak kontinyu (tidak menerus), yang disebabkan oleh adanya rumpang waktu pengendapan. Dalam geologi dikenal 3 (tiga) jenis ketidak selarasan, yaitu (lihat gambar 1.3):

Gambar 1.3 Tiga jenis bentuk ketidakselarasan dalam geologi: Angular unconformity, Disconformity, dan Nonconformity

KOMPAS GEOLOGI


1. Kompas Geologi dan Bagian-Bagiannya
Kompas Klinometer dan ”hand level” merupakan alat-alat yang dipakai dalam berbagai kegiatan survei, dan dapat digunakan untuk mengukur kedududkan unsur-unsur struktur geologi. Kompas geologi merupakan kombinasi dari ketiga fungsi alat tersebut. Jenis kompas yang akan dibahas disini adalah ”Brunton” atau tipe Brunton dari berbagai merk.

Bagian-bagian utama kompas geologi terdiri dari :
a. Jarum magnet
Ujung jarum bagian utara selalu mengarah kekutub utara magnet bumi. Dalam hal ini arah utara sebenarnya harus dikoreksi terhadap deklinasi dan inklinasi yang harganya tergantung dari posisi kutub magnet bumi dimana kompas tersebut digunakan. Penting sekali untuk memperhatikan dan kemudian mengingat-ingat tanda yang digunakan untuk mengenal ujung utara jarum kompas itu. Biasanya diberi warna (merah, biru, atau putih).

b. Lingkaran pembagian derajat (Graduated circle)
Dikenal 2 macam jenis kompas yaitu kompas azimuth dengan pembagian derajat dimulai 0o arah utara (N) samapi 360o, tertulis berlawan dengan arah perputaran jarum jam dan kwadra, denganpembagian derajat dimulai 0o pada arah utara (N) dan selatan (S), sampai 90o pada arah timur (E) dan barat (W).

c. Klinometer
Klinometer adalah bagian kompas untuk mengukur besarnya kecondongan atau kemiringan suatu bidang atau lereng.

d. Penunjuk Arah (sighting arm)
Gunanya adalah untuk menunjukkan arah mata angin sesuai jarum kompas.

Gambar 1. Bagian-Bagian Kompas

KLASIFIKASI SUMBERDAYA DAN CADANGAN BATUBARA DIDASARKAN PADA TINGKAT KEYAKINAN GEOLOGI DAN KAJIAN KELAYAKAN


Pengelompokan tersebut mengandung dua aspek, yaitu aspek geologi dan aspek ekonomi. Klasifikasi sumberdaya batubara adalah sebagai berikut:

1. Sumber Daya Batubara Hipotetik (Hypothetical Coal Resource)
Sumber daya batubara hipotetik adalah batubara di daerah penyelidikan atau bagian dari daerah penyelidikan, yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap penyelidikan survei tinjau. Sejumlah kelas sumber daya yang belum ditemukan yang sama dengan cadangan batubara yg diharapkan mungkin ada di daerah atau wilayah batubara yang sama dibawah kondisi geologi atau perluasan dari sumberdaya batubara tereka. Pada umumnya, sumberdaya berada pada daerah dimana titik-titik sampling dan pengukuran serat bukti untuk ketebalan dan keberadaan batubara diambil dari distant outcrops, pertambangan, lubang-lubang galian, serta sumur-sumur. Jika eksplorasi menyatakan bahwa kebenaran dari hipotesis sumberdaya dan mengungkapkan informasi yg cukup tentang kualitasnya, jumlah serta rank, maka mereka akan di klasifikasikan kembali sebagai sumber daya teridentifikasi (identified resources).

2. Sumber Daya Batubara Tereka (inferred Coal Resource)
Sumber daya batubara tereka adalah jumlah batubara di daerah penyelidikan atau bagian dari daerah penyelidikan, yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap penyelidikan prospeksi.

Titik pengamatan mempunyai jarak yang cukup jauh sehingga penilaian dari sumber daya tidak dapat diandalkan. Daerah sumber daya ini ditentukan dari proyeksi ketebalan dan tanah penutup, rank, dan kualitas data dari titik pengukuran dan sampling berdasarkan bukti geologi dalam daerah antara 1,2 km – 4,8 km. termasuk antrasit dan bituminus dengan ketebalan 35 cm atau lebih, sub bituminus dengan ketebalan 75 cm atau lebih, lignit dengan ketebalan 150 cm atau lebih.

3. Sumber Daya Batubara Tertunjuk (Indicated Coal Resource)
Sumber daya batubara tertunjuk adalah jumlah batubara di daerah penyelidikan atau bagian dari daerah penyelidikan, yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap eksplorasi pendahuluan.

IDENTIFIKASI MINERAL PADA POSISI NIKOL SILANG


Pengamatan nikol silang dilakukan jika sayatan berada pada diagonal sumbu C, yaitu dengan memasang prisma polarisasi bagian atas. Sifat-sifat optis mineral yang diamati pada posisi nikol silang adalah birefringence (interference ganda), twinning (kembaran): tipe kembaran dan arah orientasinya dan sudut gelapan: sejajar / miring pada sudut berapa.

Sifat Birefringence (BF)

Standardisasi sayatan tipis memiliki ketebalan 0,03 mm. Dalam sayatan tipis, interference mineral harus dapat diamati, yang hanya dapat dalam sayatan tipis 0,03 mm. Ct. warna interference kuarsa terrendah berada pada orde pertama putih (abu-abu) atau mendekati warna kuning orde I. Warna interference dapat dilihat dari posisi horizontal sayatan. Setelah warna interference diketahui, pengamatan dilanjutkan melalui garis diagonalnya hingga didapatkan sifat birefringence (BF). Dari posisi birefringence, dengan meluruskan ke bawah melalui garis diagonal ke perpotongannya, akan diketahui ketebalan standarnya, apakah lebih tebal atau tidak dari 0,03 mm. Orde warna interference dan birefringence menggunakan tabel warna Michel-Levy.

Birefringence ditentukan dari refraksi ganda pada pantulan sinar maximum (warna orde tertinggi). BF dapat dilihat jika posisi sayatan berada pada sudut pemadaman 45O terhadap nikol. BF dapat digunakan (bertujuan) untuk menguji ketebalan sayatan kristal. Sifat BF mineral dapat dilihat pada table sifat-sifat mineral (Bloss, 1961; Kerr, 1959; Larsen and Berman, 1964; Rogers and Kerr, 1942) yang disertai dengan perubahan antara indeks refraksi tertinggi dan terrendahnya.

Sifat difraksi maximum biasanya juga dapat diperikan dalam sifat ini. Jika obyek memiliki belahan jelas atau bentuk kristalnya terorientasi pada keping gelas dasarnya, beberapa partikel harus disusun ulang hingga berorientasi baru, yaitu dengan membuka cover glass dan mineral didorong secara horizontal. Birefringence secara relatif sama pada setiap kelompok (kelas) mineral yang sama, ct. piroksen, amfibol dan plagioklas. Indeks refraksi dan warna mungkin berbeda di antara satu kelompok mineral, namun warna BF-nya hampir sama.

BF dapat diamati di bawah mikroskup dengan memasang lensa Bertrand (keping gipsum). Lensa Bertrand keberadaannya sering terpisah dari mikroskop. Lensa ini dapat dilepaskan. Sifat BF dapat diamati pada posisi nikol silang, yaitu dengan memasang lensa Bertrand pada posisinya (yaitu di atas analyzer). Perubahan warna yang dihasilkan biasanya ditentukan oleh warna reliefnya dan ketebalan sayatannya.

Jika reliefnya rendah (tidak berwarna) maka memiliki sifat BF tinggi. Kanada balsam memiliki sifat BF tertinggi hitam.


Gambar 1. Diagram Michel-Levy untuk mengetahui orde warna BF pada mineral; yaitu warna interferene maksimum yang dapat dilihat setelah lensa Bertrand (keping/prisma gips) dipasang



Gambar 2. Warna interferene maksimum yang dapat dilihat setelah lensa Bertrand (keping/prisma gips) dipasang

TEKTONIKA GLOBAL PULAU JAWA


Tektonik Umum

Pulau Jawa berada di tepi tenggara Daratan Sunda (Sundaland). Pada Daratan Sunda ini terdapat dua sistem gerak lempeng; Lempeng Laut Cina Selatan di utara dan Lempeng Samudera Hindia di selatan. Lempeng Laut Cina Selatan (Eurasia) bergerak ke tenggara sejak Oligosen (Longley, 1997), sedangkan Lempeng Samudera Hindia yang berada di selatan bergerak ke utara sejak Mesozoikum dan menunjam ke bawah sistem busur kepulauan Sumatra dan Jawa (Liu dkk., 1983). 

Pulau jawa yang terlihat saat sekarang adalah akibat adanya pergerakan dua lempeng yang bergerak saling mendekat dan mengalami tabrakan, dimana proses tersebut relatif bergerak menyerong (oblique) antara lempeng samudra hindia pada bagian barat daya dan lempeng Benua Asia bagian tenggara (eurasian), dimana lempeng samudra hindia akan menyusup ke lempeng asia tenggara. Pada zone subduksi akan dihasilkan palung jawa (Java trench) dengan pergerakan relatif 7 cm/tahun. Pada zone subduksi terdiri dari “Acctionary Complex ” yang materialnya secara garis besar dari lantai samudra india pada busur muka Jawa.

Fase Tektonika

Fase tektonik awal terjadi pada Mesozoikum ketika pergerakan Lempeng Indo-Australia ke arah timurlaut menghasilkan subduksi dibawah Sunda Microplate sepanjang suture Karangsambung-Meratus, dan diikuti oleh fase regangan (rifting phase) selama Paleogen dengan pembentukan serangkaian horst (tinggian) dan graben (rendahan). Aktivitas magmatik Kapur Akhir dapat diikuti menerus dari Timurlaut Sumatra –Jawa-Kalimantan Tenggara. Pembentukan cekungan depan busur (fore arc basin) berkembang di daerah selatan Jawa Barat dan Serayu Selatan di Jawa Tengah. Mendekati Kapur Akhir-Paleosen, fragmen benua yang terpisah dari Gondwana, mendekati zona subduksi Karangsambung- Meratus. Kehadiran allochthonous micro-continents di wilayah Asia Tenggara telah dilaporkan oleh banyak penulis (Metcalfe, 1996). Basement bersifat kontinental yang terletak di sebelah timur zona subduksi Karangsambung-Meratus dan yang mengalasi Selat Makasar teridentifikasi di Sumur Rubah- 1 (Conoco, 1977) berupa granit pada kedalaman 5056 kaki, sementara didekatnya Sumur Taka Talu-1 menembus basement diorit. Docking (mera-patnya) fragmen mikrokontinen pada bagian tepi timur Sundaland menyebabkan matinya zona subduksi Karang-sambung-Meratus dan terangkatnya zona subduksi tersebut menghasilkan Pegunungan Meratus.
Gambar 1. Rekonstruksi tektonika Pulau Jawa akhir kapur-paleogen

FOTOGRAMETRI


Pengertian Fotogrameri Untuk Bidang Geologi

Fotogrametri merupakan suatu pengambilan atau pengukuran data/informasi mengenai sifat dari sebuah fenomena, objek,atau benda dengan menggunakan sebuah perekam tanpa berhubungan langsung dengan objek yang akan dikaji.

Salah satu karateristik fotogrametri adalah pengukuran terhadap objek yang dilakukan tanpa berhubungan perlu berhubungan ataupun bersentuhan secara langsung dengannya. Pengukuran terhadap objek tersebut dilakukan melalui data yang diperoleh pada sistem sensor yang digunakan.Terminologi Close Range atau Rentang Dekat muncul pada saat teknik ini digunakan untuk objek dengan jarak kurang dari 100 meter dari posisi kamera berada dekat dengan objek. Fotogrametri rentang dekat adalah teknik pengukuran 3D tanpa kontak langsung dengan objek, menggunakan kamera untuk mendapatkan geometri sebuah ojek.

Dalam fotogrametri syarat fundamental yang banyak digunakan adalah syarat kesegarisan berkas sinar (collinearity condition) yaitu suatu kondisi dimana titik pusat proyeksi, titik foto dan titik obyek di tanah terletak pada satu garis dalam ruang. Kondisi ini dinamakan kondisi kolinearitas. Kamera fotogrametri tidak mempunyai lensa yang sempurna, sehingga proses perekaman yang dilakukan akan memiliki kesalahan. Oleh karena itu perlu dilakukan pengkalibrasian kamera utnuk dapat menentukan besarnya penyimpangan-penyimpangan yang terjadi. Kalibrasi kamera dilakukan untuk menentukan parameter distorsi, meliputi distorsi radial dan distorsi tangensial, serta parameter-parameter lensa lainnya, termasuk juga principal distance (c), serta titik pusat fidusial foto. Pada Software Austalis, model kalibrasi terdiri dari element interior orientasi (xo, yo, c), koefisien distorsi lensa (K1, K2, K3, P1 and P2) serta koefisen untuk perbedaan penyekalaan dan ketidak ortogonal antara sumbu X dan Y (b1, b2) Distorsi lensa dapat menyebabkan bergesernya titik pada foto dari posisi yang sebenarnya, sehingga memberikan ketelitian pengukuran yang tidak baik, namun tidak mempengaruhi kualitas ketajaman citra yang dihasilkan. Distorsi lensa dapat dibagi menjadi distorsi radial dan distorsi tangensial. 

Distorsi radial adalah pergeseran linier titik foto dalam arah radial terhadap titik utama dari posisi idealnya. Distorsi lensia biasa diekspresikan sebagai fungsi polonomial dari jarak radial (dr) terhadap titik utama foto Distorsi tangensial adalah pergeseran linier titik di foto pada arah normal (tegak lurus) garis radial memalui titik foto tersebut. Distorsi tangesial disebabkan kesalahan sentering elemen-elemen lensa dalam satu gabungan lensa dimana titik ousat elemen-elemen lensa dalam gabuang lensa tersebut tidak terletak pada satu garis lurus. Pergeseran ini biasa dideskripsikan dengan 2 persamaan polonomial untuk pergeseran pada arah x (dx) dan y (dy). Kalibrasi kamera dapat dilakukan dengan berbagai metode. Secara umum kalibrasi kamera biasa dilakukan dengan tiga metode, yaitu laboratory calibration, on-the-job calibration dan self-calibration (Atkinson, 1987). Metode lain yang dapat digunakan antara lain analytical plumb-line calibration dan stellar calibration (Fryer, 1989). Laboratory calibration dilakukan di laboratorium, terpisah dengan proses pemotretan objek.

Metode yang termasuk di dalamnya antara lain optical laboratory dan test range calibration. Secara umum metode ini sesuai untuk kamera jenis metrik.On-the-job calibration merupakan teknik penentuan parameter kalibrasi lensa dan kamera dilakukan bersamaan dengan pelaksanaan pemotretan objek. Pada self-calibration pengukuran titik-titik target pada objek pengamatan digunakan sebagai data untuk penentuan titik objek sekaligus untuk menentukan parameter kalibrasi kamera. Hingga saat ini, tekni Close Range Photogrammetry banyak digunakan untuk: 
- Rekomstruksi bangunan sejarah - rekonstruksi kecelakaan mobil 
- Keperluan medical - Pemantauan small scale deformation di industry pesawat dan kapal 
- Pemantauan deformasi jembatan - dll 

1. Alat Pengukur Luas
Dapat dibedakan menjadi tiga kategori yaitu alat sederhana, alat mekanik dan alat elektronik. Dalam hal ini yang digunakan adalah alat sederhana karena penggunaannya paling cepat. Berdasarkan metode yang digunakan alat sederhana dibedakan atas :

  1. Metode strip; yang digunakan berupa lembaran tembus cahaya yang padanya ditarik garis-garis sejajar dan berinterval sama besar. Lembaran tembus cahaya ini ditumpangkan pada objek yang diukur luasnya. Kemudian ditarik garis-garis tegak lurus pada batas objek sedemikian hingga bagian yang dihilangkan sama dengan bagian yang yang ditambahkan. Sisi atas segi empat panjang atau sisi atas strip itu dijumlahkan dan dikalikan dengan intervalnya sehingga diperoleh luas objek pada foto.
Gambar 1. Pengukuran Luas dengan Metode Strip

BRACHIOPODA


1. Phylum Brachiopoda
Phylum Brachiopoda berasal dari bahasa latin, yaitu Bracchium yang berarti lengan (arm) dan Poda yang berarti kaki (foot). Jadi, Phylum Brachiopoda adalah hewan yang merupakan suatu kesatuan tubuh yang difungsikan sebagai kaki dan lengan. Brachiopoda adalah bivalvia yang berevolusi pada zaman awal periode Cambrian yang masih hidup hingga sekarang. Mereka seringkali disebut dengan “lampu cangkang” yang merupakan komponen penting organisme benthos pada zaman Palaeozoic.

Phylum ini merupakan salah satu phylum kecil dari benthic invertebrates. Hingga saat ini terdapat sekitar 300 spesies dari phylum ini yang mampu bertahan dan sekitar 30.000 fosilnya telah dinamai. Phylum Brachiopoda mempunyai 2 buah cangkang yang mirip Pelecypoda, tetapi perbedaannya bahwa cangkang Brachiopoda tidak sama satu dengan yang lain.

2. Anatomi Tubuh Phylum Brachiopoda
Brachiopoda mempunyai 2 cangkang (valve), yaitu Pedicle atau Ventral Valve dan Brachial atau Dorsal Valve. Tubuh tertutup oleh 2 cangkang, satu ke arah dorsal dan yang lainnya ke arah ventral. Biasanya melekat pada substrat dengan pedicile. Cangkang dilapisi oleh mantle yang dibentuk oleh pertumbuhan dinding tubuh dan membentuk rongga mantle. Cangkang Brachiopoda tersusun oleh senyawa karbonat, atau khitin dan kalsium fosfat. Cangkangnya biasanya mempunyai hiasan, berupa garis tumbuh, costae atau costellae. Kedua buah cangkang dihubungkan oleh gigi pertautan (pada Brachiopoda artikulata) atau sistem otot (Brachipoda inartikulata).

Pada pertangkupan kedua cangkang terdapat lubang tempat keluarnya pedicle yaitu Pedicle opening atau Forament. Pedicle merupakan juluran otot yang berfungsi untuk menempelkan tubuhnya pada tempat hidupnya. Bagian lain pada cangkang adalah Lophophore, berupa dua buah tentakel berbulu getar, berfungsi untuk menggerakkan air di sekitarnya. Lophophore mebentuk kumparan dengan atau tanpa didukung oleh skeletal internal. Usus Brachiopoda berbentuk U. Sistem peredaran darahnya terbuka.


Gambar 1. Anatomi Eksternal Phylum Brachiopoda

Gambar 2. Anatomi Internal Phylum Brachiopoda

BENTANG ALAM FLUVIAL


Bentang alam sungai (fluvial) adalah bentuk – bentuk bentang alam yang terjadi akibat dari proses fluvial. Pada hakekatnya aliran sungai terbentuk oleh adanya sumber air, baik air hujan, mencairnya es, ataupun munculnya mata air, dan adanya relief permukaan bumi. Air hujan setelah jatuh dipermukaan bumi mengalami evaporasi, merembas kedalam tanah, diserap tumbuh – tumbuhan dan binatang, transpirasi, dan sisanya mengalir dipermukaan sebagai ‘surface run off’. Run off ini dapat segera setelah hujan atapun muncul kemudian melalui proses resapan dulu kedalam tanah sebagai air tanah dan muncul kembali pada mata air.

Sejarah Hidup Sungai
a. Youth (Sungai Muda)
Terjal, gradient besar dan berarus sangat cepat. Kegiatan erosi sangat kuat, khususnya erosi kebawah. Terdapat air terjun, kaskade, penampang longitudinal tak teratur, longsoran banyak terjadi pada tebing – tebingnya.

 b. Mature (Sungai Dewasa)
Mengalami pengurangan gradient, sehingga kecepatan alirannya berkurang. Daya angkut erosi berkurang. Tercapai kondisi keseimbangan penampangnya ‘graded’ hanya cukup untuk membawa beban (load), terdapat variasi antara erosi dan sedimentasi, terus memperlebar lembahnya, dan mengembangkan lantai datar.
Old Stream (Sungai Tua)
Dataran banjir, dibantaran yang lebar sungai biasanya mengembangakan pola berkelok(meander), oxbow lakes, alur teranyam, tanggul alam, dan undak – undak sungai menunjukan kondisi ‘graded’.

BATUBARA


1. Pendahuluan
Batubara adalah batuan yang mudah terbakar yang lebih dari 50% -70% berat volumenya merupakan bahan organik yang merupakan material karbonan termasuk inherent moisture. Pengertian umum dari batubara adalah batuan sedimen yang dapat terbakar, terbentuk dari endapan organik, utamanya adalah sisa-sisa tumbuhan dan terbentuk melalui proses pembatubaraan. Unsur-unsur utamanya terdiri dari karbon, hidrogen dan oksigen. Batu bara juga adalah batuan organik yang memiliki sifat-sifat fisika dan kimia yang kompleks yang dapat ditemui dalam berbagai bentuk. Analisa unsur memberikan rumus formula empiris seperti C137H97O9NS untuk bituminus dan C240H90O4NS untuk antrasit.
Bahan organik utamanya yaitu tumbuhan yang dapat berupa jejak kulit pohon, daun, akar, struktur kayu, spora, polen, damar, dan lain-lain.  Materi pembentuk batubara dapat berupa jenis:
Ø  Alga
Ø  Silofita
Ø  Pteridofita
Ø  Gimnospermae
Ø  Angiospermae

2. Pembentukan Batubara
Batubara bagus terbentuk dari endapan yang terbentuk pada zaman Karbon, kira-kira 340 juta tahun yang lalu (jtl)> Pada masa ini pembentukan batu bara terjadi paling produktif dimana hampir seluruh deposit batu bara (black coal) yang ekonomis di belahan bumi bagian utara terbentuk. Pada Zaman Permian, kira-kira 270 jtl, juga terbentuk endapan-endapan batu bara yang ekonomis di belahan bumi bagian selatan, seperti Australia, dan berlangsung terus hingga ke Zaman Tersier (70 - 13 jtl) di berbagai belahan bumi lain.
Selanjutnya bahan organik tersebut mengalami berbagai tingkat pembusukan (dekomposisi) sehingga menyebabkan perubahan sifat-sifat fisik maupun kimia baik sebelum ataupun sesudah tertutup oleh endapan lainnya. Proses pembentukan batubara terdiri dari dua tahap yaitu tahap biokimia (penggambutan) dan tahap geokimia (pembatubaraan).
a. Tahap Diagenetik atau Biokimia, dimulai pada saat material tanaman terdeposisi hingga lignit terbentuk. Agen utama yang berperan dalam proses perubahan ini adalah kadar air, tingkat oksidasi dan gangguan biologis yang dapat menyebabkan proses pembusukan (dekomposisi) dan kompaksi material organik serta membentuk gambut
b. Tahap Malihan atau Geokimia, meliputi proses perubahan dari lignit menjadi bituminus dan akhirnya antrasit.
Tahap penggambutan (peatification) adalah tahap dimana sisa-sisa tumbuhan yang terakumulasi tersimpan dalam kondisi reduksi di daerah rawa dengan sistem pengeringan yang buruk dan selalu tergenang air pada kedalaman 0,5 – 10 meter. Material tumbuhan yang busuk ini melepaskan H, N, O, dan C dalam bentuk senyawa CO2, H2O, dan NH3 untuk menjadi humus. Selanjutnya oleh bakteri anaerobik dan fungi diubah menjadi gambut (Stach, 1982, op cit Susilawati 1992).
Tahap pembatubaraan (coalification) merupakan gabungan proses biologi, kimia, dan fisika yang terjadi karena pengaruh pembebanan dari sedimen yang menutupinya, temperatur, tekanan, dan waktu terhadap komponen organik dari gambut (Stach, 1982, op cit Susilawati 1992). Pada tahap ini prosentase karbon akan meningkat, sedangkan prosentase hidrogen dan oksigen akan berkurang (Fischer, 1927, op cit Susilawati 1992). Proses ini akan menghasilkan batubara dalam berbagai tingkat kematangan material organiknya mulai dari lignit, sub bituminus, bituminus, semi antrasit, antrasit, hingga meta antrasit.

Gambar 1. Tahap Pembentukan Batubara

Gambar 2. Skema Pembentukan Batubara

BATUAN METAMORF


1. Proses Terbentuknya Batuan Metamorf          
Batuan metamorf merupakan batuan hasil malihan dari batuan yang telah ada sebelumnya yang ditunjukkan dengan adanya perubahan komposisi mineral, tekstur dan struktur batuan yang terjadi pada fase padat (solid rate) akibat adanya perubahan temperatur, tekanan dan kondisi kimia di kerak bumi. (Ehlers and Blatt, 1982).

Jadi batuan metamorf terjadi karena adanya perubahan yang disebabkan oleh proses metamorfosa. Proses metamorfosa merupakan suatu proses pengubahan batuan akibat perubahan tekanan, temperatur dan adanya aktifitas kimia fluida/gas atau variasi dari ketiga faktor tersebut. Prosese metamorfosa merupakan proses isokimia, dimana tidak terjadi penambahan unsur-unsur kimia pada batuan yang mengalami metamorfosa. Temperatur berkisar antara 2000 C - 8000 C, tanpa melalui fase cair. Faktor-faktor yang menyebabkan terjadinya metamorfosa adadalah perubahan temperature, tekanan dan adanya aktifitas kimia fluidaatau gas. (Huang, 1962)

Perubahan temperatur dapat terjadi oleh karena berbagai macam sebab, antara lain oleh adanya pemanasan akibat intrusi magmatit dan perubahan gradien geothermal. Panas dalam skala kecil juga dapat terjadi akibat adanya gesekan atau friksi selama terjadinya deformasi suatu massa batuan. Pada batuan silikat batas bawah terjadinya metamorfosa pada umumnya pada suhu 1500 C + 500C yang ditandai dengan munculnya mineral-mineral Mg - carpholite, Glaucophane, Lawsonite, Paragonite, Prehnite atau Slitpnomelane. Sedangkan batas atas terjadinya metamorfosa sebelum terjadi pelelehan adalah berkisar 6500C-11000C, tergantung pada jenis batuan asalnya. (Bucher & Frey, 1994)

Tekanan yang menyebabkan terjadinya suatu metamorfosa bervariasi dasarnya. Metamorfosa akibat intrusi magmatik dapat terjadi mendekati tekanan permukaan yang besarnya beberapa bar saja. Sedangkan metamorfosa yang terjadi pada suatu kompleks ofiolit dapat terjadi dengan tekanan lebih dari 30-40 kBar. (Bucher & Frey, 1994)

Aktivitas kimiawi fluida dan gas yang berada pada jaringan antara butir batuan, mempunyai peranan yang penting dalam metamorfosa. Fluida aktif yang banyak berperan adalah air beserta karbon dioksida, asam hidroklorik dan hidroflorik. Umumnya fluida dan gas tersebut bertindak sebagai katalis atau solven serta bersifat membentuk reaksi kimia dan penyetimbang mekanis.(Huang WT, 1962)

2. Tipe-Tipe Metamorfosa
Bucher dan Frey (1994) mengemukakan bahwa berdasarkan tatanan geologinya, metamorfosa dapat dibedakan menjadi dua, yaitu :

2.1 Metamorfosa regional / dinamothermal
Metamorfosa regional atau dinamothermal merupakan metamorfosa yang terjadi pada daerah yang sangat luas. Metamorfosa ini terjadi pada daerah yang sangat luas. Metamorfosa ini dibedakan menjadi tiga yaitu : metamorfosa orogenik, burial, dan dasar samudera (ocean-floor).

a. Metamorfosa Orogenik
Metamorfosa ini terjadi pada daerah sabuk orogenik dimana terjadi proses deformasi yang menyebabkan rekristalisasi. Umumnya batuan metamorf yang dihasilkan mempunyai butiran mineral yang terorientasi dan membentuk sabuk yang melampar dari ratusan sampai ribuan kilometer. Proses metamorfosa ini memerlukan waktu yang sangat lama berkisar antara puluhan juta tahun lalu.


b. Metamorfosa Burial
Metamorfosa ini terjadi oleh akibat kenaikan tekanan dan temperatur pada daerah geosinklin yang mengalami sedimentasi intensif, kemudian terlipat. Proses yang terjadi adalah rekristalisai dan reaksi antara mineral dengan fluida.

c. Metamorfosa Dasar dan Samudera
Metamorfosa ini terjadi akibat adanya perubahan pada kerak samudera di sekitar punggungan tengah samudera (mid oceanic ridges). Batuan metamorf yang dihasilkan umumnya berkomposisi basa dan ultrabasa. Adanya pemanasan air laut menyebabkan mudah terjadinya reaksi kimia antara batuan dan air laut tersebut.

2.2 Metamorfosa Lokal
Merupakan metamorfosa yang terjadi pada daerah yang sempit berkisar antara beberapa meter sampai kilometer saja. Metamorfosa ini dapat dibedakan menjadi :
a. Metamorfosa Kontak
Terjadi pada batuan yang menalami pemanasan di sekitar kontak massa batuan beku intrusif maupun ekstrusif. Perubahan terjadi karena pengaruh panas dan material yang dilepaskan oleh magma serta oleh deformasi akibat gerakan massa. Zona metamorfosa kontak disebut contact aureole. Proses yang terjadi umumnya berupa rekristalisasi, reaksi antara mineral, reaksi antara mineral dan fluida serta penggantian dan penambahan material. Batuan yang dihasilkan umumnya berbutir halus.

- Pirometamorfosa/ Metamorfosa optalic/Kaustik/Thermal.
Adalah jenis khusus metamorfosa kontak yang menunjukkan efek hasil temperatur yang tinggi pada kontak batuan dengan magma pada kondisi volkanik atau quasi volkanik. Contoh pada xenolith atau pada zone dike.

- Metamorfosa Kataklastik/Dislokasi/Kinemati/Dinamik
Terjadi pada daerah yang mengalami deformasi intensif, seperti pada patahan. Proses yang terjadi murni karena gaya mekanis yang mengakibatkan penggerusan dan sranulasi batuan. Batuan yang dihasilkan bersifat non-foliasi dan dikenal sebagai fault breccia, fault gauge, atau milonit.

- Metamorfosa Hidrotermal/Metasotisme
Terjadi akibat adanya perkolasi fluida atau gas yang panas pada jaringan antar butir atau pada retakan-retakan batuan sehingga menyebabkan perubahan komposisi mineral dan kimia. Perubahan juga dipengaruhi oleh adanya confining pressure. 


Gambar Tipe-tipe metamorfosa

BENTUK TUBUH BATUAN BEKU DALAM (INTRUSIF)


1. Pengertian Batuan Beku
Batuan beku atau batuan igneus (dari Bahasa Latin: ignis, "api") adalah jenis batuan yang terbentuk dari magma yang mendingin dan mengeras, dengan atau tanpa proses kristalisasi, baik di bawah permukaan sebagai batuan intrusif (plutonik) maupun di atas permukaan sebagai batuan ekstrusif (vulkanik).
Magma ini dapat berasal dari batuan setengah cair ataupun batuan yang sudah ada, baik di mantel ataupun kerak bumi. Umumnya, proses pelelehan terjadi oleh salah satu dari proses-proses berikut: kenaikan temperatur, penurunan tekanan, atau perubahan komposisi. Lebih dari 700 tipe batuan beku telah berhasil dideskripsikan, sebagian besar terbentuk dibawah permukaan kerak bumi. Berdasarkan genesanya atau tempat terjadinya dari batuan beku, dapat dibedakan menjadi dua yaitu Batuan ekstrusif dan Batuan Intrusif.
Batuan beku yaitu batuan yang terbentuk sebagai hasil dari kumpulan mineral-mineral silikat hasil penghabluran magma yang mendingin (Walter T Huang, 1962). Berdasarkan teksturnya batuan beku ini bisa dibedakan lagi menjadi batuan beku plutonik dan vulkanik. Perbedaan antara keduanya bisa dilihat dari besar mineral penyusun batuannya. Batuan beku plutonik umumnya terbentuk dari pembekuan magma yang relatif lebih lambat sehingga mineral-mineral penyusunnya relatif besar. Contoh batuan beku plutonik ini seperti gabro, diorite, dan granit (yang sering dijadikan hiasan rumah). Sedangkan batuan beku vulkanik umumnya terbentuk dari pembekuan magma yang sangat cepat (misalnya akibat letusan gunung api) sehingga mineral penyusunnya lebih kecil. Contohnya adalah basalt, andesit (yang sering dijadikan pondasi rumah), dan dacite.

2. Macam Bentuk Tubuh Batuan Beku
a. Batuan Ekstrusi
Kelompok batuan ini terdiri dari semua material yang dikeluarkan kepermukaan bumi baik didaratan maupun dilautan. Material ini mendingin dan membeku dengan cepat ada yang berbentuk padat, cair, debu, suatu larutan.
1. Ekstrusi linier, terjadi jika magma keluar lewat celah-celah retakan atau patahan memanjang sehingga membentuk deretan gunung berapi. Misalnya Gunung Api Laki di Eslandia, dan deretan gunung api di Jawa Tengah dan Jawa Timur.
2. Ekstrusi areal,  terjadi apabila letak magma dekat dengan permukaan bumi, sehingga magma keluar meleleh di beberapa tempat pada suatu areal tertentu. Misalnya Yellow Stone National Park di Amerika Serikat yang luasnya mencapai 10.000 km2.
3. Ekstrusi sentral, terjadi magma keluar melalui sebuah lubang (saluran magma) dan membentuk gunung-gunung yang terpisah. Misalnya Gunung Krakatau, Gunung Vesucius, dan lain-lain.

b. Batuan Intrusif
Intrusi merupakan suatu proses yang terjadi akibat suatu adanya aktivitas magma (plutonisme) yang berada dibawah permukaan bumi yang berusaha keluar namun tidak muncul kepermukaan yang di akibat adanya tekanan dan temperature yang sangat tinggi dari dalam bumi, yaitu dengan cara menerobos batuan yang sebelumnnya sudah terbentuk atau ada, sehingga menghasilkan beberapa bentuk tubuh dari batuan beku.
Batuan ini secara genesa terjadi dan terbentuk disuatu tempat yang berada dibawah permukaan bumi yang membeku dengan lambat, sehingga menghasilkan perbedaan dari komposisi mineral, susunan kimia, struktur, tekstur yang tidak beraturan, ebrbentuk tabular, bentuk pipas sehingga menhasilkan tubuh batuan beku dengan jenis yang berbeda- beda. Dimana kontak batuan intrusi dengan batuan yang diintrusi atau daerah batuan, bila sejajar dengan lapisan batuan maka tubuh intrusi ini disebut konkordan. Bila batuan yang mengintrusi memotong dari lapisan massa batuan yang diintrusi maka disebut dengan diskordan.

Macam-macam bentuk tubuh Batuan Beku intrisif :
1. Batholit
2. Dyke
3. Sill
4. Lakolit
5. Stock

Ø  Batholit
Batholit berasal dari bahasa Yunani (greek); dari kata Bathos (ukuran) dan lithos (batuan) yang artinya merupakan suatu tempat, rongga atau ruang dengan ukuran besar sebagai tempat sekaligus hasil dari intrusi batuan beku (plutonic) yang terbentuk akibat dari pembekuan magma didalam kulit bumi. Batholit sering juga diartikan sebagai batuan beku yang terbentuk di dalam dapur magma, sebagai akibat penurunan suhu yang sangat lambat.
Batholit umumnya berbentuk ruang besar yang tidak beraturan dan biasanya memiliki bentuk yang jelas dipermukaan bumi dengan penampang melintang dari tubuh pluton (intrusi dengan tubuh tidak beraturan) memperlihatkan yang sangat besar dan kedalaman yang tidak diketahui batasnya. Luas area batholit baik yang ada didalam kulit bumi maupun suatu Singkapan batholit yang muncul kepermukaan memiliki luas sampai 100 km2. Batholit biasanya selalu tersusun atas senyawa-senyawa felsik (asam) sampai intermediet (menengah), itu artinya batholit sebagian besar terdiri dari batuan beku asam sampai batuan beku intermediet, misalnya granite, diorite, dan quartz monzonite.Meskipun terlihat tak beraturan, batholit merupakan suatu ruang yang memiliki komposisi mineral yang komplek.
Singkapan batholit akan muncul kepermukaan setelah banyak mengalami proses pengangkatan (up lift) dan proses erosi selama jutaan tahun. Contoh singkapan baholit yang ada di Indonesia misalnya singkpan felsik batholit di kepulauan sumatra, Riau, dan Kalimantan, sedangkan yang terkenal adalah intrusi granit yang terdapat dipulau karimun (Riau).

Gambar 1. Batholit

Ø  Dike atau Dyke
Dalam ilmu geologi Dyke adalah suatu jenis intrusi batuan beku berbentuk lembar yang mengenai lapisan tanah dan memotong secara bersebrangan Dyke, disebut juga gang, merupakan salah satu badan intrusi yang dibandingkan dengan batholit, berdimensi kecil. Bentuknya tabular, sebagai lembaran yang kedua sisinya sejajar, memotong struktur (perlapisan) batuan yang diterobosnya. Kadang-kadang kontak hampir sejajar tapi perbandingan antara panjang dan lebar tidak sebanding. Kenampakan di lapangan dyke dapat berukuran sangat kecil dan dapat pula berukuran sangat besar.